アンプの音などというものは存在しない~オーディオアンプの選び方

 JBLの大型スピーカーにマッキントッシュやマークレビンソンなどの弩級アンプを組み合わせて小音量で鳴らす。これは最も音を悪くする方法だ。なぜこの組み合わせがダメなのか。何に注意して選べばよいのか。そもそもアンプに固有の音色というものは存在するのだろうか。

 

出力はどの程度あればよいのか

 これを判断するには、何らかの基準がいる。その一つに、「コンサートホールの客席におけるピーク音圧レベルが109dB」というものがある(文献1)。

 この資料によると、オーケストラでは低音のエネルギーが最も大きく、109dBは100~200Hz付近。それ以外の帯域は103dBとなっている。

 ステレオアンプでは2ch同時出力で109dB達成できればいいので、片chの場合は3dBマイナスして106dBが目標になる。

 距離 L(m)における出力音圧レベル(dB)は次式で計算できる。これが106dBになるアンプの出力Wを求めればよい。

出力音圧レベル=能率(dB)+10log10(W)ー20log10(L)

補足:能率は〇〇dB/W/mや、〇〇dB/2.83V/m と書いてある場合がある。後者の表記でスピーカーのインピーダンスが8Ωならどちらも同じことを表している。

 

 2m離れた点で片ch 106dBの音圧が得られるアンプの出力Wを計算したグラフを次に示す。

オケの再現に必要なスピーカーの能率とアンプ出力の関係を示すグラフ

オーケストラの音圧再現に必要なスピーカーの能率とアンプ出力の関係

 スピーカーの能率が100dBの場合、アンプは20Wあれば良い。能率が92dBを下回ると100W以上必要。

 この線上ならどれも同じ音質、とはならない。能率が高いスピーカーは、大音量の音を高品質で出せるが、能率が低いスピーカーでは、たとえそのパワーがスピーカーに入っても良質の再生音は望めない。

 

 

アンプの出力は大きいほど音が悪い

アンプの歪率特性の例(LM3886)

歪率(THD+N)特性の例:LM3886データシート

 半導体アンプの歪率は、グラフのように「レ」の字を左右反転したような形になるのが普通だ。つまり出力を小さくして使うほど歪+ノイズが大きい。

 このカーブはアンプの出力が大きいと上にシフトすることがある。この場合、同じ1Wを出すための歪は、出力の大きいアンプほど多い。

 カタログスペックの歪率は、通常グラフの一番低いポイント付近の値なので参考にならない。

 

 

 この特性はABクラスの半導体アンプで共通する。アンプの出力は大きいほど良いというわけではなく、スピーカの能率に合ったものを選ぶ必要がある。

 それでも「アンプは余裕があったほうが良い」などと考え、必要以上に大出力のアンプを選ぶと、ボリウムを絞って歪の大きい、つまり音の悪い部分をメインに使うことになってしまう。

(2007/5/14追補)
 出力段にICモジュールを使ったアンプは小出力でも音が悪い。ミニコンやラジカセが小出力でありながら音が悪かったのは、ローコストなICモジュールが使われていた為。

 

アンプは出力が大きいほど音に余裕がある?

 オーディオ雑誌でよく見るこの論評は本当だろうか。トランジスタアンプで音の歪みが聞き取れるほど大音量を出すことは滅多にない。それに、大音量時はスピーカの歪みの方がずっと大きいのが普通だ。

 「音の余裕」は大出力アンプの貫禄ある見た目と、数字上のスペックからくる主観にすぎず、理論的な根拠はない。

 余裕が必要なのはスピーカーの耐入力であって、アンプではない。過剰な出力はコストや小音量再生の面で不利になるだけ。音質面で得することは無いと考えておきたい。

 

NEC A-10 TypeIVのカタログ

 NEC A-10 TypeIV(写真は1987年当時のカタログ)。強力な電源部を備え2オームの低負荷駆動に対応。2オームまで駆動できるといっても、2オームの負荷を繋がなければ関係ない性能。

 しかし評論家がオームの法則どおり電流を流せる点を「アンプの理想」などと褒め称えるものだから良く売れた。

 

 私はこのTypeIVを所有していたが、肝心の音がソニー製の小形軽量アンプ(当時ヒートパイプ放熱だった)と聞き比べて差がなかった点と、ボリウムのギャングエラーが大きい点が気になって手放した。

 

電源が重要なのは当たり前

 アンプで一番重要なのは電源であると昔から言われている。そこで「ウン万μFのコンデンサを搭載して負荷変動に強くしました」とうセールストークが聞かれる。

 電源の容量は、周波数特性、出力といったスペックに対し十分なものを備えるのが普通であり、設計事項にすぎない。国産有名メーカーの商品を使う限り、私たちが気にするようなことはほとんどない。

 クリーン電源(リジェネレーター)は無駄の代表[8]。これで本当に音が変わったとしたら、アンプの電源の作りがお粗末な証拠である。

 

アンプの音は何で決まるのか(’20/3/14改定)

 アンプの出力音圧特性は、どの商品も可聴域(20Hz-20kHz)で真っ直ぐ(フラット)が普通。そこに音のキャラクターや音色といったものはない。つまりアンプに固有の音は存在しない。

 ところが実際は、アンプを変えるとスピーカーから出てくる音が変わることがある。それは、アンプの音が違うからではなくて、スピーカーの音が、繋ぐアンプで変わるから。これを理解するには、DF(ダンピングファクター)というものを知る必要がある。

 DFをごく簡単に言うと、スピーカーの抵抗とアンプ(ケーブル含む)の出力抵抗の比。これが大きいほど、スピーカーはアンプの言う通りに動く。DFが小さいと、スピーカーを制動できなくなって言う通りに動かない。これがスピーカーの出力音圧特性に現われる。

スピーカー周波数特性のダンピングファクターによる変化を示したグラフ

ダンピングファクターと周波数特性の変化
出典: 「強くなる!スピーカ&エンクロージャー百科」誠文堂(1980) P38

 グラフはDFによって出力音圧特性が変わる様子を示した図。

 当館では、DFの基準値を20~40とした[4]

 DFが1桁台になると過渡応答が劣化して低音が良く響く「真空管アンプの音」に近づき、10を超えると過渡応答が改善すると同時に低音の締まりが良くなる。

 またこのDFは、スピーカーケーブルの抵抗や端子の接触抵抗の影響を大きく受ける[4]。 

 

 この原理を知らないと、アンプやケーブルに音の違いがあると思い込み、結果がイメージできない組み合わせ問題に見えてしまう。結局アンプによる音の変化をイメージするには、アンプとケーブルの組み合わせで結果的にDFがとうなったか知ることが重要になる

 DFで音が変わる!こういうことを考え出すとアンプ選びが困難になるが、上のグラフではDFが10と∞でほとんど変わらない。つまりDFが10以上の時、アンプ選びで音の違いを考えなくて良くなる。半導体アンプでは、ほとんどの商品でこの条件を満たすので、アンプ選びのポイントはデザインや品質などに重点を置くことになる。

※:DFは周波数特性を持っている。これがアンプによる音の影響を、最も正確に知るための情報の一つと考えられる。

 

ダンピングファクター(DF)は大きいほど良いのか

 ダンピングファクターとは負荷のインピーダンスとアンプの出力インピーダンスの比。この値が大きいほど、スピーカーが信号に対し忠実に動くが、上のグラフから解る通り10を超えるとあまり変わらなくなる。

 半導体アンプのDFは一般に40以上、中には300を超える商品もある。高いDFのメリットは、ケーブルを長く伸ばせること。10m程度の屋内配線では、アンプのDFは40もあれば十分である[4]

 

アンプの試聴は無意味

 DFの話がわかると、お店でアンプをとっかえひっかえ試聴することが、ほとんど意味ないことがわかる。これは単に、お店のシステムでDFの変化を聞いているだけ。

 店頭では後述するようにオーディオチェックCDとテスターが役に立つ。

 

 


 

アンプの価値とは

 アンプは正確な増幅器であるべきだ。ステレオパワーアンプでは、左右の増幅率(ゲイン)が揃っている点も重要になる。すると、

 「左右のゲインがボリウムの位置によらず正確に揃い、その正確さがいつまでも変わらない」

ことが価値になる。

 市販のアンプに見られるいくつかの課題について以下にご説明する。

 

1.ゲインの経時変化

 当初はこれが目立たないくらいに小さいが、年月が経つと次第にズレてきてボーカルのセンター定位がおかしいことで気づく。私の経験では、原因がCDプレーヤーのアナログ出力だったこともある。

 いつまでも調子よく使うためには定期的な校正が欠かせないが、ほとんどの商品が売りっぱなしで、そのような手段もメンテの仕組みも用意されていない。左右で5%もズレていると、どんなに高額な機器もゴミに見えてくる。

 一応アンプにはバランスコントロールがあるが、変化が大きすぎて使い物にならないし、そもそもゲイン誤差は普段触れてしまうツマミで調整するものではない。

 

2.ボリウムの品質

 プリアンプの価値はこの部分で決まるといってもいい。よく問題になる品質に、左右のゲインがボリウムの位置によって違うギャングエラーがある。

 

アキュフェーズのプリアンプ C-275 ボリウムは、絞りきった状態から中音量までの回転域において、音量の変化がなめらかで、左右の抵抗値(音量)が同一になっている(ギャングエラーが小さい)ことが大切。

 実測してみると、アキュフェーズのアンプ(C-275)はこの点比較的優秀だった[5]。 

 

 

 単なる抵抗体のボリウムは信号伝送の品質を落とす要因として知られている。この改善に取り組んだ事例がある。私の記憶ではビクターのGmボリューム(1983)が最初。2000年代になってアキュフェーズがAAVA方式を生み出している。ソニーはTA-A1ESにオプティマム・ゲイン・コントロールを搭載しこの問題に対処している。

  デジタルアンプでは数値演算の桁落ちによって情報量が落ちる。これに対しては演算をやめて出力の波高値を変えたり、小音量用の電源を別に用意し切り替えるなどで対処している[6]

 

3.スピーカーターミナルの品質

 ナット式のねじ込みターミナルが一般的。これに線を剥いたケーブルを挿すのは、最も良くない接続法。次第に接触抵抗が増大しDFが低下する。ここはきちんと端末処理し適切な締め付けトルクで固定したい[7]

 

 

アンプの価値を維持しやすいデジタルアンプ

 デジタルアンプには一切のアナログ処理を介さない「フルデジタル」と、パワー部だけD級アンプにした「デジタル」の2種類がある。

 フルデジタルはボリウムコントロールがきわめて正確で、原理的に特性の経時変化が無い。定期的に校正に出さなくてもアンプの価値を維持しやすいメリットがある。

 フルデジタルは少ないが、現在DENONのPMAシリーズがある。

 

 

次のようなアンプは買ってはいけない

 

1.トランスからうなりが聞こえるもの

 アンプは騒音、震動源。うなり音や振動問題はローコスト製品に多い。トランスの音や振動をゼロにする事はできないが、リスニングポジションまで離れても聞こえるものは問題。

 アンプが発する騒音振動が小さいことは重要なスペックだが、これを測ったり比較した記事をあまり見ない。

 

2.無意味に重いもの

 電源部で最も重い部品に「トランス」がある。なので「重量が重い=電源部がしっかり作られている」という関係がある程度成り立っていた。

 しかし1970年頃からとある評論家がアンプを重さを測って雑誌に公表し出してから、メーカーが重量の「水増し」をやりだした。ボリウムノブやシャーシなどが意味もなく重くなり、単純に重さで電源部の作りを判断できなくなった。

  重い製品は、自分でメンテするにも修理や調整でメーカーに送るにも苦労する。

 

3.音に関係ない「素材」にコストをかけているもの

 アルミ削り出し、鏡面仕上げ、鋳鉄製インシュレーター・・これら筐体の作りや素材は音に無関係。海外製の高級コンポのフタを開けてみたらスカスカだった・・そんな外観と中身のバランスがとれていない商品もある。

 趣味の商品に一定の外観は重要だが、見えない部分にお金がかかっていたり、外観だけやたら豪華な作りの商品に注意したい。

 プロ用アンプではこのような無駄を徹底排除している。プロ用アンプに見られない作りは、外観を良くしているだけで音質には寄与しないものと考えていい。

 

4.修理・校正サービスがない商品

 アンプは設置してオシマイではない。アナログアンプのゲインは次第にずれていくもの。アンプの価値を維持するために、定期的な調整や、劣化した部品の交換が必要になる。

 アキュフェーズはこのサポートがしっかりしていて初期性能を回復してくれるが、それ以外のメーカーはサービスの内容をよく確認した方が良い。

 海外の輸入品はほとんどが「売りっぱなし」。サービスがあるように見えても代理店が変わったり、代理店が取扱いをやめてしまえばそこで終わり。そんなリスクから、海外製は避けた方が無難。

 

 

振動はアンプの音に関係しない

 微妙な音の違いを問題にするスタジオモニターにパワーアンプが内臓されるのは、スピーカーの振動がアンプに影響しないから。音の変動要因になるスピーカーケーブルを無くせるというメリットもある。

 パワーアンプの中には「電源トランス」という振動源がある。アンプの振動対策では、「外からの影響を防ぐ」でなく「自分の振動を外へ出さない」方が重要になる。

 

マルチチャンネルの落とし穴

 チャンネルデバイダーと複数のアンプを使ってユニットを個別に駆動する「マルチアンプ方式」がある。

 ネットワークのインピーダンスが無くなり特性上は確かに有利だが、測定環境も技術も伴わない素人が音をまとめるのは不可能に近い。マルチアンプは泥濘の始まりだから手を出さないのが正解だ。

 


 

まとめ~アンプはこのようにして選ぶ

 結局、次の手順で選べばよい。

 

1.必要なアンプの出力を求める

 使うスピーカーの能率を調べて次のグラフから必要なアンプの出力を求める。実用最大出力がこの線を上回っていればよいが、1桁超えないよう注意。出来るだけ能率の高いスピーカーに小出力のアンプを組み合わせることが、良質な再生音を生み出すポイントになる。

オケの再現に必要なスピーカーの能率とアンプ出力の関係を示すグラフ

オーケストラの音圧再現に必要なスピーカーの能率とアンプ出力の関係(再掲)

2.デザインと質感で候補を絞る(’20/3/14追加)

 オーディオ製品は趣味性の高い商品なので、デザインや質感が無視できない。

 デザインは、スピーカーや室内インテリアとマッチしたものを選ぶ。これに違和感のあるものを選んでしまうと、出てくる音にも主観的な影響を及ぼして買い替えたくなることがある。

 実際モノに触ってみて、電源ONのリレー音と、スイッチやボリウムなどの感触をチェックしたい。通販で現物を見ずに買うと、安っぽくてガッカリといった失敗をすることがある。

 

3.ボリウムのギャングエラーを調べる

 オーディオチェックCDとテスターを用意し、SP端子を次のように配線する。

ボリウムのギャングエラーを測るための測定回路図

 マイナス同士をショートしてプラス端子の電圧を測る。浮いた電圧を測るので、テスターは必ず電池駆動のものを使う。

 

 

 オーディオチェックCDはデジタル信号がそのまま記録されたもの、例えばDENON オーディオ・チェックHQCD を用意するか、WaveGene(フリーソフト)で1kHz -3dB L+Rのサイン波をWAVファイルに落としてUSBメモリなどに入れたものを使う。

 テスターをAC測定モードにして、ボリウムを絞り切ったところから少しずつ上げていき、テスターの数字を読む。数字がゼロに近いほどギャングエラーが少ない。具体的なエラーの比率は、そのときのSP端子電圧で割って求める。

 ギャングエラーの上限は2%を目安としたい。4%を超えるものは候補から除外する。これでクズアンプを掴まずに済む。あとは、デザインや価格をみて決めればよい。

 

ヤマハ RX-S600のギャングエラーを測定している様子

 ヤマハ RX-S600のギャングエラーを測定している様子。結果は1.6%(ボリウム位置に関係なくほぼ一定)だった。

 ちなみにボリウムが可変抵抗のアキュフェーズC-275は1.7%(MAX位置を除く)。ミニコンポで4%前後[5]

 

4.動作音をチェックする

 電源を投入したら動作音を確認する。

 トランスのうなり、ミューティングリレーのON/OFF動作音、その他異音がしないか。デジタルアンプでは、まれに電源OFFでコイル鳴きが出ることがある。

 うなりは小さい音なので、周りが静かでないと聞こえない。触ってみるのも有効。

 

設置の際の注意事項 

 スピーカーケーブルは必ず端末処理して使う。端末処理は、圧着端子(Y形)か、バナナプラグが使いやすい[4]。続際には、締め付けトルクに注意する[7]

AVアンプ裏面の使わない端子を養生処理している様子 端子類は新品のうちにコンタクトオイルを塗り、テープや防塵キャップなどで養生しておくと新品のコンディションをずっと維持できる。

 

 

買って終わりではない~メンテナンスと校正

 年に一度、上記の要領で左右のギャングエラー(レベル差)をチェックして、4%を超えるようならメーカーに校正に出す。これはアンプの価値を維持するうえで必要な作業だ。

 

 

<関連商品>
小出力のデジタルアンプ

<関連記事>
AVアンプ(AVレシーバー)の選び方~これからはスリム&小型&高音質
2.ジャズ喫茶ベイシーの音の秘密~ハイレゾ時代のスピーカー選び
4.ケーブルの音などというものは存在しない~スピーカーケーブルの選び方
5.オーディオアンプのギャングエラーを調べる~海外製高級アンプはガラクタだった!
6.フルデジタルアンプの問題点と実力
7.知らないうちにスピーカターミナルのナットが緩んでしまうのはなぜか
8.電源ケーブルで音は変わるか~オーディオ用電源ケーブルの選び方
CDプレーヤの音などというものは存在しない~CDプレーヤの選び方

<参考文献>
1.オーケストラの出力音圧レベル 「ハイファイスピーカ」中島平太郎 日本放送出版協会 p11